
COMPSCI 389
Introduction to Machine Learning

MENACE
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

MENACE

• Machine Educable Noughts and Crosses Engine (MENACE)
• Designed by Donald Michie in 1961
• Learns to plays noughts and crosses (tic-tac-toe)

MENACE

• Machine Educable Noughts and
Crosses Engine (MENACE)

• Designed by Donald Michie in 1961
• Learns to plays noughts and crosses

(tic-tac-toe)
• One of the first RL algorithms!
• We will cover a variant of the original

MENACE (details may differ)

How many game states are there?

• With redundant states removed, there are only 304 game states!

Label matchboxes with every possible game state

Assign a color to each square

Load the matchboxes

• Load the matchboxes with several beads of each color
corresponding to a legal move.

2024 2025

How to play

• When it is MENACE’s turn to make a move, find the matchbox
corresponding to the current game state

• Randomly select a bead from inside
• MENACE takes the move corresponding to the color of the chosen

bead
• Leave the matchbox open with the bead in front

How MENACE learns

• If MENACE wins, for each move, return the bead and add three
extra beads of the same color.

• This makes it more likely for MENACE to select the chosen moves in the
future.

• If MENACE loses, the beads are not returned to the boxes.
• This makes it less likely for MENACE to select the chosen moves in the

future.
• If it is a draw, then return the beads to the matchboxes along with

one extra bead.
• This makes it slightly more likely for MENACE to select the chosen moves

in the future.

Note: The real MENACE algorithm gave
different rewards based on how many
moves had been made

Results

• Michie played 220 games against MENACE over 16 hours.
• After 20 games MENACE could consistently draw (the result of

optimal play)

How is this RL?

• The states are the possible board positions when it is MENACE’s
turn.

• The actions are the possible moves.
• The state transitions follow the rules of tic-tac-toe, and include

play by the human player.
• If the human player changes their strategy over time, then the transition

function 𝑝𝑝 of the MDP changes over time!
• This is called a non-stationary MDP.

• Winning (+3), losing (−1), and drawing (+1) can be viewed as
rewards

• The beads and matchboxes are one way of encoding a policy

Exploration Versus Exploitation

• Notice that MENACE does not always select the move that it
thinks is best!

• This is the move corresponding to the most frequent bead color in the
current matchbox.

• The behavior of RL agents can be roughly classified as either
exploration or exploitation.

• Exploration: The agent selects the action that it does not think is
optimal in order to learn more about that action’s outcome.

• Exploitation: The agent selects the action that it thinks is optimal
to maximize the amount of reward it gets.

Exploration-Exploitation Trade-Off

• Both exploration and exploitation are necessary.
• Without exploration, the agent will always select the same action in each

state.
• Without information about other actions, it can’t learn that they are better.

• Without exploitation, the agent won’t maximize the amount of reward that
it gets.

• RL agents balance this exploration-exploitation trade-off.

Remember, a policy 𝜋𝜋 is
parameterized by policy
parameters 𝜃𝜃. We write 𝜋𝜋𝜃𝜃
to denote the policy with
parameters (weights) 𝜃𝜃 just
like we wrote 𝑓𝑓𝑤𝑤 in the
supervised learning setting.

MENACE selected these
actions by sampling them
with probability
proportional to the number
of beads of each color in
the matchbox for state 𝑆𝑆𝑡𝑡.

If MENACE won

If MENACE lost

If MENACE won

If MENACE lost

MENACE added more
beads of the color
corresponding to action 𝐴𝐴𝑡𝑡,
making it more likely in
state 𝑆𝑆𝑡𝑡

If MENACE won

If MENACE lostMENACE removed one
bead corresponding to
action 𝐴𝐴𝑡𝑡, making it less
likely in state 𝑆𝑆𝑡𝑡

How to:
• Let 𝑓𝑓 be a function that takes three inputs, 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧, and outputs a real number

• 𝑓𝑓 = 𝜋𝜋
• 𝑥𝑥 = 𝑆𝑆𝑡𝑡
• 𝑦𝑦 = 𝐴𝐴𝑡𝑡
• 𝑧𝑧 = 𝜃𝜃

• How can we change 𝑧𝑧 to increase 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)?
• Recall from gradient descent lectures that the partial derivative 𝜕𝜕𝜕𝜕 𝑥𝑥,𝑦𝑦,𝑧𝑧

𝜕𝜕𝜕𝜕
 indicates how

𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) changes a 𝑧𝑧 changes.
• If 𝜕𝜕𝜕𝜕 𝑥𝑥,𝑦𝑦,𝑧𝑧

𝜕𝜕𝜕𝜕
 is positive, increasing 𝑧𝑧 increases 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)

• If 𝜕𝜕𝜕𝜕 𝑥𝑥,𝑦𝑦,𝑧𝑧
𝜕𝜕𝜕𝜕

 is negative, decreasing 𝑧𝑧 increases 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)

• Solution: Step in the direction of the partial derivative:

𝜃𝜃 ← 𝜃𝜃 + 𝛼𝛼
𝜕𝜕𝜕𝜕 𝑥𝑥,𝑦𝑦, 𝑧𝑧

𝜕𝜕𝜕𝜕
,

• 𝛼𝛼 is a hyperparameter called the step size or learning rate.
• How can we compute this derivative?

• Reverse-mode automatic differentiation (backpropagation for neural networks)!

How to:
• Let 𝑓𝑓 be a function that takes three inputs, 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧, and outputs a real number

• 𝑓𝑓 = 𝜋𝜋
• 𝑥𝑥 = 𝑆𝑆𝑡𝑡
• 𝑦𝑦 = 𝐴𝐴𝑡𝑡
• 𝑧𝑧 = 𝜃𝜃

• How can we change 𝑧𝑧 to increase 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)?
• Recall from gradient descent lectures that the partial derivative 𝜕𝜕𝜕𝜕 𝑥𝑥,𝑦𝑦,𝑧𝑧

𝜕𝜕𝜕𝜕
 indicates how

𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) changes a 𝑧𝑧 changes.
• If 𝜕𝜕𝜕𝜕 𝑥𝑥,𝑦𝑦,𝑧𝑧

𝜕𝜕𝜕𝜕
 is positive, increasing 𝑧𝑧 increases 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)

• If 𝜕𝜕𝜕𝜕 𝑥𝑥,𝑦𝑦,𝑧𝑧
𝜕𝜕𝜕𝜕

 is negative, decreasing 𝑧𝑧 increases 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)

• Solution: Step in the direction of the partial derivative:

𝜃𝜃 ← 𝜃𝜃 − 𝛼𝛼
𝜕𝜕𝜕𝜕 𝑥𝑥,𝑦𝑦, 𝑧𝑧

𝜕𝜕𝜕𝜕
,

• 𝛼𝛼 is a hyperparameter called the step size or learning rate.
• How can we compute this derivative?

• Reverse-mode automatic differentiation (backpropagation for neural networks)!

less

opposite
v

decrease

• Notice that the only
difference in the
resulting update is
the sign.

• In other problems, is
a return (discounted
sum of rewards) of
− 1 big or small?

• We don’t know!

• Idea: weight the
update by the return:

• Consider the iteration of the for-
loop where 𝑡𝑡 = 5:

• Recall that the partial derivative
indicates how to change 𝜃𝜃𝑖𝑖 to
increase the probability of action
𝐴𝐴5 in state 𝑆𝑆5.

• The weight given to this direction
is:
𝑅𝑅0 + 𝛾𝛾𝑅𝑅1 + 𝛾𝛾2𝑅𝑅2 + 𝛾𝛾3𝑅𝑅3 + 𝛾𝛾4𝑅𝑅4 + 𝛾𝛾5𝑅𝑅5 + ⋯

• However, 𝐴𝐴5 didn’t influence 𝑅𝑅1
through 𝑅𝑅4!

• Idea: Change the weight to only
consider rewards after 𝐴𝐴𝑡𝑡:

Note: We can replace 𝜕𝜕𝜋𝜋𝜃𝜃 𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡
𝜕𝜕𝜃𝜃𝑖𝑖

 with 𝜕𝜕 ln 𝜋𝜋𝜃𝜃 𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡
𝜕𝜕𝜃𝜃𝑖𝑖

.
The ln() is monotonic, and so it doesn’t change the
meaning.

REINFORCE

We inserted a ln()
here

We use only the rewards after 𝐴𝐴𝑡𝑡
to weight the partial derivative.

Note: The actual REINFORCE algorithm sums up the changes to 𝜃𝜃𝑖𝑖 from the whole
episode and then makes the changes. The pseudocode below changes each 𝜃𝜃𝑖𝑖 at
time 𝑡𝑡 = 0, and that change influences the derivative computed at subsequent
times.

REINFORCE
• Proposed by Ronald Williams in the 1992 paper “Simple statistical gradient-

following algorithms for connectionist reinforcement learning” Machine
Learning 8 (1992), pp. 229–256.

• Recall the goal of finding a 𝜋𝜋∗ such that:

𝜋𝜋∗ ∈ arg max
𝜋𝜋

𝐄𝐄 �
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡 .

• REINFORCE is gradient ascent on the objective function:

𝐽𝐽 𝜃𝜃 = 𝐄𝐄 �
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡 ,

where 𝜃𝜃 influences the actions 𝐴𝐴𝑡𝑡, and hence the distribution of rewards, 𝑅𝑅𝑡𝑡.
• REINFORCE remains one of the standard RL algorithms today!

End

	COMPSCI 389�Introduction to Machine Learning
	MENACE
	MENACE
	How many game states are there?
	Label matchboxes with every possible game state
	Assign a color to each square
	Load the matchboxes
	How to play
	How MENACE learns
	Results
	How is this RL?
	Exploration Versus Exploitation
	Exploration-Exploitation Trade-Off
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	How to:
	How to:
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	REINFORCE
	REINFORCE
	End

