COMPSCI 389

Introduction to Machine Learning

MENACE
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

MENACE

* Machine Educable Noughts and Crosses Engine (MENACE)

* Designed by Donald Michie in 1961
* Learns to plays noughts and crosses (tic-tac-toe)

MENACE

* Machine Educable Noughts and
Crosses Engine (MENACE)

* Designed by Donald Michie in 1961

* Learns to plays noughts and crosses
(tic-tac-toe)

One of the first RL algorithms!

* We will cover a variant of the original
MENACE (details may differ)

Experiments on the mechanization of game-learning
Part 1. Characterization of the model and its parameters

By Donald Michie

This paper describes a trial-and-error device which learns to play the game of Noughts and Crosses.
It was initially constructed from d beads and sub: i in
essentials by a program for a Pegasus 2 computer. The parameters governing the adaptive
behaviour of this automaton are described and preliminary observations on its performance are

briefly reported.

A reason for being interested in games is that they
provide a microcosm of intellectual activity in general.
Those thought processes which we regard as being
specifically human accomplishments—learning from
experience, inductive reasoning, argument by analogy,
the formation and testing of new hypotheses, and so on
——are brought into play even by simple games of mental
skill. The problem of artificial intelligence consists in
the reduction of these processes to the elementary
operations of arithmetic and logic.

The present work is concerned with one particular
mental activity, that of trial-and-error learning, and the
mental task used for studying it is the game of Noughts
and Crosses, sometimes known as Tic-tac-toe.

From the point of view of one of the players, any game,
such as Tic-tac-toe, represents a sequential decision
process. Sooner or later the sequence of choices ter-
minates in an outcome, to which a value is attached,
according to whether the game has been won, drawn
or lost. If the player is able to learn from experience,
the choices which have led up to a given outcome
receive reinforcements in the light of the outcome value.
In general, positive outcomes are fed back in the form
of positive reinforcement, that is to say, the choices
belonging to the successful sequence become more
probable on later recurrence of the same situations.

Similarly, negative outcomes are fed back as negative’

reinforcements. The process is illustrated in Fig. 1.

RE-INFORCEMENT LOGP

g

pos |
~ o LOUTCOME

[A—-E WG

.

L) - » LY - LY

Fig. 1.—Schematic picture of the reinforcement process during
trial-and-error learning of a game. The numbered boxes
represent the players’ successive choice-points, and the black
boxes those of the opponent. Arrows drawn with broken lines
indi ible al ive choices open at the given stage

232

hb and col

Yy

This picture of trial-and-error learning uses the
concepts and terminology of the experimental psy-
chologist. Observations on animals agree with common
sense in suggesting that the strength of reinforcement
becomes less as we proceed backwards along the loop
from the terminus towards the origin. The more recent
the choice in the sequence, the greater its probable share
of responsibility for the outcome. This provides an
adequate conceptual basis for a trial-and-error learning
device, provided that the total number of choice-points
which can be encountered is small enough for them to be
individually listed.

Fig. 2.—The matchbox machine—MENACE

The matchbox machine

Fig. 2 shows such a device, known as MENACE,
standing for Matchbox Educable Noughts And Crosses
Engine. The machine shown is equipped to function
as the opening player. The principles by which it
operates are extremely simple and have been described
elsewhere (Michie, 1961). However, a brief recapitula-
tion will here be given.

Every one of the 287 essenrially distinet positions
which the opening player can encounter in the course

How many game states are there?

0 X o)

X

Fig. 3.—Four positions which are in reality variants of a single
position

* With redundant states removed, there are only 304 game states!

O
=
©
)
p)
()
&
O
00
QL
2
p]
p]
@)
(@
=
| -
(D)
>
()
e
y
7p]
)
X
@)
O
e
O
=
©
&
d
O
©
—

Assign a color to each square

Table 1

The colour code used in the matchbox machine. The
system of numbering the squares is that adopted for the
subsequent computer simulation program

1 2 3

WHITE LILAC SILVER

BLACK GOLD GREEN

AMBER RED PINK

Load the matchboxes

 Load the matchboxes with several beads of each color
corresponding to a legal move.

2024 2025 |

How to play

* When itis MENACE’s turn to make a move, find the matchbox
corresponding to the current game state

* Randomly select a bead from inside

* MENACE takes the move corresponding to the color of the chosen
bead

* Leave the matchbox open with the bead in front

Note: The real MENACE algorithm gave
different rewards based on how many

How MENACE learns moves had been mad

e [f MENACE wins, for each move, return the bead and add three
extra beads of the same color.

* This makes it more likely for MENACE to select the chosen moves in the
future.

* [f MENACE loses, the beads are not returned to the boxes.
* This makes it less likely for MENACE to select the chosen moves in the
future.
* Ifitis a draw, then return the beads to the matchboxes along with

one extra bead.

* This makes it slightly more likely for MENACE to select the chosen moves
in the future.

Results

* Michie played 220 games against MENACE over 16 hours.

* After 20 games MENACE could consistently draw (the result of
optimal play)

How is this RL?

* The states are the possible board positions when it is MENACE’s
turn.

* The actions are the possible moves.

* The state transitions follow the rules of tic-tac-toe, and include
play by the human player.

* |If the human player changes their strategy over time, then the transition
function p of the MDP changes over time!

* This is called a non-stationary MDP.

* Winning (+3), losing (—1), and drawing (+1) can be viewed as
rewards

* The beads and matchboxes are one way of encoding a policy

Exploration Versus Exploitation

* Notice that MENACE does not always select the move that it

thinks is best!

* This is the move corresponding to the most frequent bead color in the
current matchbox.

* The behavior of RL agents can be roughly classified as either
exploration or exploitation.

* Exploration: The agent selects the action that it does not think is
optimal in order to learn more about that action’s outcome.

* Exploitation: The agent selects the action that it thinks is optimal
to maximize the amount of reward it gets.

Exploration-Exploitation Trade-Off

* Both exploration and exploitation are necessary.

* Without exploration, the agent will always select the same action in each
state.

* Without information about other actions, it can’t learn that they are better.

* Without exploitation, the agent won’t maximize the amount of reward that
it gets.

* RL agents balance this exploration-exploitation trade-off.

Algorithm 16.1: A simple RL algorithm inspired by MENACE.

1 for each episode do
2 | // Run one episode (play one game).

8 // Learn from the outcome of the episode.

19 end

Algorithm 16.1: A simple RL algorithm inspired by MENACE.

1 for each episode do

2 // Run one episode (play one game).
Remember, a policy is 3 for each time t in the episode do
parameterized by policy 4 Agent observes state S¢;
parameters 6. We write g 5 Agent selects action A; according to the current policy, 7p;
to denote the p(?llcy W'th 6 Environment responds by transitioning from state 5; to state
parameters (weights) 0 just g nd emittine reward R,:
like we wrote f,, in the t+1 & & b
supervised learning setting. 7 end
8 // Learn from the outcome of the episode.

MENACE selected these
actions by sampling them
with probability
proportional to the number
of beads of each colorin
the matchbox for state S;.

19 end

1

2
3
4
5
6

14

19

Algorithm 16.1: A simple RL algorithm inspired by MENACE.

for each episode do

// Run one episode (play one game).

for each time t in the episode do

Agent observes state S¢;

Agent selects action A; according to the current policy, 7g;

Environment responds by transitioning from state S; to state
St+1 and emitting reward Ry;

end

// Learn from the outcome of the episode.

if 372, ¥Ry is big then If MENACE won
| if 272, YRy issmall then If MENACE lost

end

MENACE added more
beads of the color
corresponding to action A4,
making it more likely in
state S

1

2
3
4
5
6

10

[|

Algorithm 16.1: A simple RL algorithm inspired by MENACE.

for each episode do

// Run one episode (play one game).

for each time t in the episode do

Agent observes state S¢;

Agent selects action A; according to the current policy, 7g;

Environment responds by transitioning from state S; to state
St+1 and emitting reward Ry;

end

// Learn from the outcome of the episode.

if 327°, 7' Ry is big then If MENACE won
for each time t in the episode do

1L

12

13
14

19

> Make action A; more likely in state Sy;
end

end
if 3770y Rt is small then If MENACE lost

end

MENACE removed one
bead corresponding to
action 4;, making it less
likely in state S;

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15

A

Algorithm 16.1: A simple RL algorithm inspired by MENACE.

for each episode do

// Run one episode (play one game).

for each time t in the episode do

Agent observes state S¢;

Agent selects action A; according to the current policy, 7g;

Environment responds by transitioning from state S; to state
St+1 and emitting reward Ry;

end
// Learn from the outcome of the episode.
if 327°, 7' Ry is big then If MENACE won
for each time t in the episode do
‘ Make action A; more likely in state S¢;
end
end

if 3252, 7' Ry is small then If MENACE lost
| for each time t in the episode do

10

17
18
19

-~ Make action A; less likely in state Sy;
‘ end

end

end

H OW TO: Make action A; more likely in state Sy;

Let f be a function that takes three inputs, x, y, and z, and outputs a real number

c f=m

o XZSt
Yy =4;
e z=20

How can we change z to increase f(x,y,z)?
af (x,y,2)
0z

Recall from gradient descent lectures that the partial derivative indicates how

f(x,y,z) changes a z changes.

of (x,y,2) . P . .
o If f(xzyz) is positive, increasing z increases f (x,y, z)
6f(?c,y,2)
o If
0z

Solution: Step in the direction of the partial derivative:

a) J)
9 ota f(xyZ)’
0z

* «ais ahyperparameter called the step size or learning rate.

* How can we compute this derivative?
* Reverse-mode automatic differentiation (backpropagation for neural networks)!

is negative, decreasing z increases f (x,y, z)

less

* Make action A; e likely in state S¢;
How to: y

Let f be a function that takes three inputs, x, y, and z, and outputs a real number

c f=m

i xZSt
* y=4A
T z=0 decrease

How can we change z to inerease f (x,y,2)?
of (x,y.2)

indicates how
0z

Recall from gradient descent lectures that the partial derivative
f(x,y,z) changes a z changes.

of (x,y,2) . P . .
o If f(xzyz) is positive, increasing z increases f (x,y, z)
6f(?c,y,2)
o If
0z

Solution: Step in the'direction of the partial derivative:

opposite of (x,y,2)
<0 —a«a e ,

* «ais ahyperparameter called the step size or learning rate.

* How can we compute this derivative?
* Reverse-mode automatic differentiation (backpropagation for neural networks)!

is negative, decreasing z increases f (x,y, z)

11 | | ‘ Make action A; more likely in state S¢;

16|

| Make action A; less likely in state Sy;

S Ul = W N =

10
11

12

13
14
15

16

17
18

Algorithm 16.2: A simple RL algorithm inspired by MENACE, Version
2.0

for each episode do

// Run one episode (play one game).

for each time t in the episode do

Agent observes state S¢;

Agent selects action A; according to the current policy, 7g;

Environment responds by transitioning from state S; to state
St+1 and emitting reward Ry;

end

// Learn from the outcome of the episode.
if 7, ytR} is big then

for each time t in the episode do

Vi, 0; — 0; + aZmeCuA),
1

end

end

if 372 7' Ry is small then

for each time t in the episode do

Vi, 0; «— 0; — ac?nefg%t.,ﬂt);

end
end

19 end

Algorithm 16.2: A simple RL algorithm inspired by MENACE, Version
* Notice that the only 2.0

difference in the 1 for each episode do

] . 2 // Run one episode (play one game).
resulting update is 3 | foreach time t in the episode do
the Sign] 4 Agent observes state S;;
5 Agent selects action A; according to the current policy, 1tg;
* |n other pro blems, Is b Environment responds by transitioning from state S; to state
: S d emitti d Ry;
areturn (discounted | | 70T SRS A
sum of rewardS) of 8 | //_Learn from the outcome of the episode.
— 1 big or small? 9 | if|X;2, 'Ry is bigthen
’ ' 10 for each time t in the episode do
* We don’t know! » Vi, 0; — 0; + a 220uA),
* |ldea: weight the 1 end
. 13 end
15 for each time t in the episode do
, = drg(Ss, Ay) 16 Vi, 0; < 0; — ﬂg—nﬁ(gf_'At};
Vi, 6; 0: + AR d _ d0;
A a(;J} f) 20; 17 end
18 end

19 end

10
11
12
13

14
15

16

17
18

Algorithm 16.2: A simple RL algorithm inspired by MENACE, Version
2.0
for each episode do
// Run one episode (play one game).
for each time t in the episode do
Agent observes state S;;
Agent selects action Ay according to the current policy, mp;
Environment responds by transitioning from state 5; to state
St+1 and emitting reward Ry;
end
// Learn from the outcome of the episode.
if 377, ¥'Ry is big then
for each time t in the episode do ‘
Vi, 0; « 0; + a 2054,
end
end
if 372, y'Ry is small then
for each time t in the episode do

. dmg(S:,A
Vi, 0; — 6; — a 7oA,

end
end

19 end

= S BT - s

@~

10

11
12

Algorithm 16.3: A simple RL algorithm inspired by MENACE, Version

for each episode do

// Run one episode (play one game).

for each time t in the episode do
Agent observes state S¢;
Agent selects action A; according to the current policy, 7p;
Environment responds by transitioning from state S; to state

St+1 and emitting reward Ry;

end

// Learn from the outcome of the episode.

for each time t in the episode do

. oo ’ ang(5;,A
VI, 9;‘ — 9;‘ + o (Zy:[} Vt Rf") Hﬂtgﬂtj !);

end

end

¢ COnSideI’ the |te ration Of the fO I- Algorithm 16.3: A simple RL algorithm inspired by MENACE, Version
loop wheret = 5: >

1 for each episode do

// Run one episode (play one game).

for each time t in the episode do

Agent observes state 5;

Agent selects action A; according to the current policy, 71g;
Environment responds by transitioning from state S; to state

* Recall that the partial derivative St+1 and emitting reward R;;
indicates how to change 6; to o

8 // Learn from the outcome of the episode.

increase the probab|l|ty of action 9 | for each time t in the episode do

> A
Vi, 0; « 0; + (Z ! Ry Ino(Ss, As)
= 20;

= L | T

~1

. 10 Vi, 6; «— 6; + a (2%, v Ry a—ﬂ”(s'_’ﬂr];
Ag in state Ss. °l (XY Re) 555
. d

* The weight given to this direction ==

IS: 00 00

RO + le +]/ZRZ + y3R3 +]/4R4 +]/SRS + o Z V Rff —);t Z ;ka-I-k

]] t'= k=0

* However, A: didn’t influence R4

th rough R4' Note: We can replace Wwith 0 ln(nggt'At)).
e |dea: Change the Weight to only The In() is monotonic, and so it doesn’t change the

meaning.

consider rewards after A;:

Note: The actual REINFORCE algorithm sums up the changes to 8; from the whole
episode and then makes the changes. The pseudocode below changes each 6; at

R E I N FO RC E time t = 0, and that change influences the derivative computed at subsequent

times.

Algorithm 17.2: REINFORCE

1 for each episode do

2 // Run one episode (play one game).

3 for each time t in the episode do

4 Agent observes state S¢;

5 Agent selects action A; according to the current policy, 7g;

6 Environment responds by transitioning from state S; to state
St+1 and emitting reward Ry;

7 end
5 // Learn from the outcome of the episode. We inserted a In()
9 for each time t in the episode do / here
: dIn(mg(S;,A
10 Vi, 0; <« 0; + ay’ (272, V¥Rt 1) (Hgé: D,
11 end

We use only the rewards after A;
12 end to weight the partial derivative.

REINFORCE

* Proposed by Ronald Williams in the 1992 paper “Simple statistical gradient-
following algorithms for connectionist reinforcement learning” Machine

Learning 8 (1992), pp. 229-256.
* Recall the goal of finding a m™ such that:

T € argmaxE lzy

* REINFORCE is gradient ascent on the objectlve function:

J(6) =E [z]/th

where 0 influences the actions A;, and hence the distribution of rewards, R;.
* REINFORCE remains one of the standard RL algorithms today!

)

	COMPSCI 389�Introduction to Machine Learning
	MENACE
	MENACE
	How many game states are there?
	Label matchboxes with every possible game state
	Assign a color to each square
	Load the matchboxes
	How to play
	How MENACE learns
	Results
	How is this RL?
	Exploration Versus Exploitation
	Exploration-Exploitation Trade-Off
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	How to:
	How to:
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	REINFORCE
	REINFORCE
	End

